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We examine the problem of the Liapunov stability of the zero solution of a mul- 
tidimensional nonlinear differential equation system with periodic coefficients 
and holomocphic right-hand sides. We investigate the criticalcase when the chac- 

acteristic equation of the linearized system has only complex-conjugate coots 

equal to unity in modulus and when definite integral relations (internal resonance) 

exist between the characteristic indices and the frequency of the unperturbed motion. 
For any type of resonance we give a normal form of the system by reducing the ocigir 

nal problem to the problem of stability under internal resonance for autonomous 
systems, considerea earlier in [l] ; this enables us to obtain necessary and suffi- 

cient conditions for the stability of a model system, i.e. for the most important 

cases of odd-order resonance. We show that in the majority of cases the instabi- 

lity of the model system implies the instability of the complete system, We show 

that an even-order resonance can lead to the asymptotic stability of the system. 
For a second-order system we give necessary and sufficient conditions for asymp- 
totic stability with respect to the first nonlinear term in the normal form, Weindi- 

cate the extension of the results obtained to the stability of Hamiltonian systems. 

Let US consider the stability problem for the trivial solution of the System of equations 

d2T*/&=X*(s*, t> (0. 11 

x, (0, t) = 0, x, (z*, t) = A (t) z* + yj xy (z*, t) 
km >,2 

Here x,and X, E Es,, and X, (x.+, t) is an analytic vector function periodic in 

time t with a real period w. We investigate the critical case when the matrix A (t) is 
such that all the coots of the characteristic equation are complex and equal to unity in 

modulus. Then, according to [2], the stability problem for the trivial solution of the non- 
autonomous system (0.1) reduces to the critical case of the stability of 7~ pairs of purely 

imaginary coots for an autonomous system if no relations of the form 

(0.2) 

A = (L - * -t M, p = (PI, * - *, p,) 
lPI=p,+.. .+ in = k> 3, ps b 0 

exist detween the characteristic indices & A, (A,2 ( 0, s = 1, 2, . . ., n) and the 
number Zni / o . Here 11 is the vector of the system’s characteristic indices, P is an 
n-dimensional vector with integral components, pl, . . ., p,, ace relatively prime in- 
tegers, including zero. 

Definition. We say that the system (0.1) possesses a kth-order internal resonance 
if relations (0. 2) ace satisfied, 

Our aim is to investigate the stability of the trivial solution of system (0. 1) with intec- 
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nal resonance, &I all the subsequent discussions we are restricted by the fo~owi~~ assump- 
tions: (1) all .&, are distinct (certain cases of rnultlpie frequencies were considered in 
f3J) ; @) none of the ratios ~~~~~~~ s = 9, 2, . _ _ v rt is an integer ~other~i~~~e 
characteristic equation would have roots equal to + 1); (3) for a specified h there 
exists a unique resonance vector P satisfying conditions (0.21, i. e, there is no inter- 
action of resonances when the same frequencies occur s~~n~t~e~s~y In several resonance 
relations. 

According to [Z, 4-J we can write system (3.1) in the form m 

i = ?bS _t 2 X(l) @7 y> t)l y’ = - 5 i- z: y(l) (z* $4, t) 
I=Ipr>,a K=+%4 

($.$3) 

5 = (St * * 9, %J, Y - hfl, * + ‘1 &A h = I&t . . ‘9 w 

by using a nonsingular linear transformation with periodic coefficients, Were x and y 
are corpses-~o~ugate vectors, h is a diagonal matrix, X@ fz, y, t> andYfr) @a, yI 
t) are complex-conjugate vector functions periodic in E with period O, whose compo- 

nents Xi” and Y,(l) are represented by I th-order farms, so that 

where k, and 2, are all possible integral vectors, The normal form CS] of system (0.3) 
is of pat value in what follows, 

I, Rsdoatfon to notmsf farm, Let us show that by using a nonlinear(poly- 
nomial) Liapunov transformation with periodic coefficients we can reduce system (0.3) 
to a form in which the nonlinear terms of arbitrarily high order do not contain time t 
explicitly. To do this we transform system [o. 3) by the s~bs~~~on 

aN+1 sM4-1 

x = L! + 2 U@) (U, z), t), y = v + r: vf’) (24, U, t) 
r-m I=?B 

where N is an arbitrarily large positive integer and Ei@ and 8~~~ are ~o~~~~x~~~- 
jugate vector functions whose components Ug(r) and V,(Q, s = 1, 2, . . , IZ am Ith- 
order forms with coefficients periodic in t of period O,W that 

According to [3, 41. the functions Uk,r, are found from the equations 

%3 44 = <(k, - 43 A? - L lw+l~s1= J 

were CEsr, are the coefficients in the I th-order forms of the transformed equations for 
us and -ug, and ~&,r, are known functions of UrSi, and Vt,t, with 1 b i-l-! I, I< 1 - 1. 
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When 1 = m the functions Q))L,I, turn into Kk,rS, i. e. are specified periodic functions 
of t with period o. We omit the subscripts k,and 2, in what follows. 

Two cases can occur for Eq.(l. 1). In the first one let the condition 

2ni 
x=ypJ, q =o, f1, *2,... (1.2) 

not be satisfied. The terms of the transformed equations, corresponding to such vectors 

k, and I,, are called nonresonance terms. Then, according to [4], for any a priori 
specified constants C there exists a unique periodic solution (of period 0) of Eq.(l. 1) 

U = pt II 1 :-J_ S ext* (t) dt + ( eXtQ) (t) dt] 
0 0 

(1.3) 

We can thus suppress all nonresonance terms by setting C = 0 . 
Let us now consider the vectors k, and I, for which condition (1.2) is satisfied, The 

terms of the transformed equations, corresponding to these vectors, are called resonance 

terms. In this case the solution (1.3) for U loses its meaning. However if we set 
(D 

C = e-%tc , e=$SO(t)e%t 
0 

(1.4) 

then the functions U (t) will, as before, be periodic for all resonance vectors k, and I, 
In fact, using the Fourier expansion for @ (t) 

we can present the general solution of Eq. (1.1) as 

U(t) = e-xt(R +f[ 5 b,exp(+v+~)t- cl&} 
0 “=-co 

Here c is chosen according to (1.4), while B is an arbitrary constant. Then, for x = 
&ni / w we obtain 

u (t) = e-x’ (B + g b, o “xp~~~~~~ q, ‘I} , vs.--q 
“=-co 

i.e. U (t) is an w-periodic function of t for any value of B. But if all U become 

o-periodic for 1 k, 1 -I- I 1, I = m , then for 1 k, 1 + 1 I, 1 = m + 1 all CD (t) oc- 
curring in Eq. (1.1) will be specified o-periodic functions of t and, consequently, for 

the determination of the functions U at the next step of the transformation we obtain 
equations of the same form as those for 1 k, / -f I 1, I = m. Thus, for arbitrarily large 
positive integer E = I k, 1 + 1 2, I, all functions U (t) satisfying Eqs. (1. 1) will be 
o-periodic for I k, I + 1 I, 1 < I . 

Let us elucidate the structure of the transformed equations. Obviously, the C are con- 
stant for those k, and I, which make x zero. It is easy to see that the relation x = 0 
is fulfilled identically with respect to n for every odd 1 if 

k,jzl,j+6,j, s,j=i,2, . . ..n 

where 6,j is the Kronecker symbol. The terms corresponding to these resonance vectors 

ks and I, are called identity responance terms. We note that x can vanish independ- 
ently of the parity of I if A satisfies the internal resonance condition (0.2) withp= 0. 
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The coefficients C for the corresponding resonance vectors k, and I, also become con- 
stants and are determined by formula (I.. 4). However, it is advisable to compute such 
resonance vectors by examining the general case of (1.2) which includes the internal 
resonance conditions (0.2). 

For an l-th order form relations (1.2) obviously coincide with (0.2) in the two cases 

1) l,j = epj + h,, - 6,i, k,j = hsj, 
Qks6 === --Gp 

2, kd = ‘PI $- h,j Jr 6.~7 E,j = h,j, qk l = EP 58 
Here h,, are all possible nonnegative integers such that 

Sk-+2 i h,i=ldd 
j==l 

(the plus sign is taken in the first case, the minus, in the second case, while t5 takes all 
positive integer values, e = 1, 2, . . .) E’, where E’ is the largest integer contained 
in the fraction (I + 1) / k in the first case and in (2 - 1) / k in the second case. 

Hence we can deduce, and this is important in what follows, that /&h-order internal 
resonance terms can appear only in the forms of not lower than ( k - 1 )-St order. Thus, 
in the variables u, and V, the first group of complex-conjugate equations take, to within 
terms of ( 2N + 1 )-st order the form 

ON+I n 

v,u,’ = us + r, 2 2 4,j n dsi + (1.5) 
t>,m a[k,+Z-1 j=1 

2N+r LI 

- n 2 2hP( 
I=k-1 cc1 

%ept) fl vipi 2 
i-1 21hsl=I+l-c A 

&Jj fr rjh,j + 
j-1 

aN+l ES 

Cf ’ *=- 
Sf 

L 5 @h,j(4exP (fr: “$ - ept dt, ) 7s = %Vs, s==l, 2, .*.,n 
0 

Here ti$ and &s are the largest integers contained in the fractions (E + 1) f k and 
(I - 1) I k , respectively ; the minus sign is taken for the first group of internal reso- 
nance terms and the plus, for the second group ; terms of not less than order 2 (N f 1) 
relative to r,, , . ., r, are not written out. 

In order to elimmate time in the internal resonance terms of system (1.5). we pass to 
the new variables E, and Q from the variables us and U, , and we obtain 

2N+1 n 

%E,’ = r, z z1 Cksj II rrsj + (1.6) 
l&m z1k,l=I-1 j=l 

2N+1 BI n n 

B x rI $“j 
l=k -1 c=l j=l ~Ih,l=i++-ek 

Z=k+l e=l j=l Zlh,l==t-l+rk 

cQj jj rp + . . , 

f=1 
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us = E&q 27, zzz qgv, s = 1, 2, . . ., 7i, 

by separating the real and imaginary parts, system (1.6) is reduced to a &&&order sys- 

tem in the critical case of 2n. zero roots with 2n groups of solutions (but not with n 
zero roots as in the nonresonance case) with constant coefficients, up to terms of (2ni -I- 

l)-st order, inclusive. The system obtained from (1.6) by discarding terms of higher than 
( 2N + 1 )-st order is called the model system. 

Note. The normal form obtained for the model system shows that it coincides com- 
pletely with the normal form for autonomous systems [l] and remains the same whether 
or not resonance obtains only between the system’s characteristic indices Z.i, . . ., h, or 

between these indices and the frequency of the un~r~r~d periodic motion, 

On the basis of the above reasoning we can state the following theorem. 
Theorem 1. The stability problem for the periodic motion of systems of higher 

than second order with internal resonance, when it is solved by a finite number of terms 

of the equations of perturbed motion, reduces completely to the equilibrium stability 

problem for autonomous systems with internal resonance of the same order. 

Note. The case, most important in practice, of odd-order resonance in a second- 
order system was considered in [S]. Even-order resonance is considered below. 

The normal form obtained enables us to distinguish two of the simplest and at thesame 

time most important cases of the solution to the stability problem. One of them corre- 

sponds to an odd-order resonance with k = m j- 1 for a system of arbitrary order 

(r.? _> 1), while the other corresponds to an even-order resonance with n = 1. We pass 
on to a more detailed consideration of these cases. 

2, Odd-order re#on(Lnce, Identity resonance terms are absent in system(1.6) 
when k is odd. IIowever, in the general case of m > k - 1 > 2 the structure of the re- 

sonance terms still remains very complex for a complete solution of the problem. The 
case m :- k - 1 & 2 is most important in practice, A complete solution of this prob- 

lem for a model system was given in [l] wherein necessary and sufficient conditions were 

obtained, from which it follows that the model system either can preserve the neutrality 
of the linear approximation or can become unstable. Therein it was shown that the in- 
stability of the model system, except for certain degenerate cases, necessarily implies 

the instability of the complete system. Obviouslyty, the latter result is valid also for the 

periodic motion stability problem being investigated since in comparison with the auto- 

nomous systems considered in [l] the terms of higher than ( 2N + 1 ) -st order, contained 

in Eqs. (1.6), depend periodically on t and, consequently, are bounded functions in a suf- 
ficiently small neighborhood of the origin, as required in the proof of instability given 
in Cl]. From what has been stated it follows also that the results obtained can be partially 
extended to the stability of the periodic motions of the Hamiltonian systems. 

3. Even-order ta#onanca. In this case the model system becomes more com- 
plex because of the presence of identity resonance terms in it. This does not permit us to 

obtain a complete solution for systems of higher than second order. However, for second- 

order systems the original problem reduces to the critical case of two zero roots with two 
groups of solutions, considered in detail in [3]. 

It is interesting, however, to ascertain which of the possible versions of the solutions in 
the critical case (stability, instability, asymptotic stability) are realized under internal 
resonance ; it is also interesting to obtain the stability conditions directly from the coef- 
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ficients of the normal form, 
Let us solve the problem for the most important case of fourth-order resonance, When 

n = 1 the internal resonance conditions acquire the form 21Lo = pni ; on the basis 
of the assumptions made above, p can take odd values only. The normal form of the 

system is 
E’ = c&l + csqs + 0 (&)” 

(we have not written down the complex-conjugate equation for q ). Here c1 , and cs are 
complex coefficients determinable from formulas (1.4) in terms of the coefficients of 
the original system. By introducing the polar coordinates r and 8, we arrive.at a sys- 
tem of the form r’ = r3 I/at2 + bz2 [A _I- cos (II, - 4f3)J _I- . . . (3.1) 

&Y = ra 1/-dz2 + b22 [ Iz + sin ($ - /te)] -t . . . 
Here 

‘OS ’ = 1/o’:+ b22 

E = 79, q = r@, c, = a, $ ib,, s = 1, 2 

terms of not lower then fourth order in r are not written out. 

The stability problem for system (3.1) is completely solved by Kamenkov’s theorem 

[3] according to which the trivial solution of system (3.1) is unstable if the form 

R (8,) ZE r4 Jh22 + b22 1A + cos (q - 40,)l > 0 

for even one value of 8, ,being a root of the equation 

(3.2) Q (0) 3 ra Jfa> + b22 IB -I- sin (I$ - 4e)l = 0 

If, however, R (0,) < 0 for all solutions of Eq.(3.2), then the trivial solution is asymp- 

totically stable. For a sign-definite CD (0) the stabilitv question is resolved by the sign 
of the integral 

0 

namely: instability if G > 0 and asymptotic stability if G ( 0 . When R (0,) < 
0 or G = 0 the stability problem is resolved by the terms of higher than third order 

in r. 
Obviously, when 1 B 1 ( 1 all values of 0 making R (0) zero are found from the 

equation sin (48 - 9) = B. On these solutions the form R (0) takes the values 

13 = r4 I/&” + bs2 (A _t 1/l - Bs) 

and can be both positive as well as negative. When 1 B ( > 1 the form CD (0) becomes 

sign-definite. By elementary calculations we convince ourselves that G s 0 in this 
case, and, consequently, the stability problem cannot be resolved by the third-orderterms 
of system (3.1). The situation is similar when A = - 1/‘- since form R va- 
nishes on one of the solutions of Eq.(3.2) and is negative on the other one. 

On the basis of the above reasoning we can state the following theorem giving the 
necessary and sufficient conditions for the asymptotic stability with respect to the first 
nonlinear terms in system (0.1) for ?z -= I with a fourth-order resonance. 
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Theorem 2. For the asymptotic stability of the trivial solution of system (3.1) 
(and, consequently, of the original system (0.1) with rz :== 1 and fourth-order resonance), 
it is necessary and sufficient to satisfy the inequalities 

a1 < - j&s2 + 6,” - hI” 

(a~ 7t - I/as2 + 6ss - b12, b12 < az2 + b27 

N o t e . The instability conditions given by the theorem extend, in particular, to Hamil- 
tonian systems. In fact, as is easily verified, from the canonicity conditions for system 
(3.1) it follows that nl - 0, therefore, on the basis of the theorem proved, we conclude 
that the periodic solution of the original canonic system is unstable when b,2< us2 + 6,“, 

The author thanks V. V. Rumiantsev and the participants of a seminar conducted by 
him for discussions on the paper. 
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We examine an encounter game problem for a linear controlled system, We as- 
sume that the controls of the first and second players are subject to integral con- 
straints. Using the idea of control with a guide [l] and the methods of stabiliza- 
tion theory [Z], we construct a stabilized control procedure ensuring a stable en- 
counter of the motions generated by it with a specified target set. The contents 
of the paper is related to the investigations in [l, 3 - 51. 

1, Let the motion of a controlled system be described by the vector differential 
equation 

dxidt =Ax+Bu+Cv, z [f,T = x0 (LQ 


